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Abstract

The concept of "nunlerical speed of

soun(l'" is proposed in the construction of nu-

merical flux. 11 is shown thai this variable

is responsible %1' the accurate resolution of

disconl.imlilies, such as contacls and shocks.

Moreover, this COll('e])l caIl })e readily ex-

tended to deal with low speed and inultit)hase

flOWS. As a l'esulI, the numerical dissipa-

tion for low speed flows is scaled with the lo-

cal fluid speed, rather than lhe sound speed.

Hence, the accuracy is enhanced, the correcl

solution recovered, and the convergence rate

iml)roved, We also eml)hasize the role of mass

flux and analyze the ])ehavior of Ibis flux.

Study of mass flux is ilnportallt because the
numerical diffusivitv introduced in il can lye

identified. In addition, it is the terlll COllllllOll

to all conservation equations.

We show calculated results for a, wide va-

riety of flows to validate the effectiveness of

using the numerical speed of sound concept

in constructing the numerical flux. \\'e espe-

cially aim at, achieving these two goals: (1)

improving accuracy and (2) gaining conver-

gence rates for all speed ranges. \\'e find that

while the l)erforlnance at, high speed range is

maintaine(l, the flux now has tile capabilily
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of performing well even with tile low speed

flows. Thanks lo tile liew numerical sl)eed of

sound, the convergence is even etflmncett for

the flows outside of the low speed range. To

realize the usefilhwss of the t)roposed method

in engineering 1)roblems, we have also per-

formed calcula!ions for COmlylex 3I) turbulen!

flows and the resuhs are in excellent agree-
merit wilh (lata.

1. Introduction

Numerical representation of inviscid

fluxes, llamelv the numerical flux functioll.

has been a sul).iect of intensive eI"['orl ])v lllallV

researchers during |he lasl three decades.

Despite lhe ellorluous l)rogress that has beell

achieved, further analysis and (leel)er llll-

([erstanding into l]lese nUlllerical 1)rocedures

continue to draw inlerest and the findings

are being reporled. In |his paper we will in-

troduce the concet)l of the l_umtrical ._p_t(l

of soul_d. This concel)t l llrllS OUt tO lye very

useful in designing a numerical flux in order
1o meet certain criteria. Moreover. as will 1)e

seen later, the numerical speed of sound lends

itself nicely to the formulation of num('l'i('al

schemes for all speeds. In olher words, it



plays an importanl role in bridging tile gap
between discretization schemes suitable for

inconq)ressible flows and those suit, able for

compressible flows.

For illustrat.ive purposes, we shall begin

by considering the 1D flux for ideal gas. The

inviscid numerical flux function is written as

a suIn of convective and pressure fluxes:

f = pu . + p = _}_ u +

H 0 H

(1)

It is noted that a. common mass flux m

appears in all equations. This is also true

for multidimensions. Since the mass flux is

common for all equations, its effects will thus

perpetuate in all variables. Hence, we suggest
thai il is desirable to observe this fact. a.t the

discrete level when devising a new scheme.

tlowever, this fact is not entirely enforced in

several modern numerical schemes.

The AlTSXl-family schomes wriles lhe in-

lerface flux ft/2, in a form mimicking lhe con-

tinutun flux, Eq. (1). as

(1)fi/2 ='1_/1/2 lI -}- I._ 2 (2)

H .i/J+_

where the cell interface straddles the cells j

and ) + 1 and the subscript j/j + 1 denotes

lhal l.he vector (1. tt, H) is evaluated with ei-

ther j or j + 1 values according t.o whether

r_l/2 is positive or negative. The det.ailed de-

seriplion of I}_/e and P1/2 can be found in

2. Numerical Speed of Sound

To understand the idea <71"numerical

speed of sotuM, we firsl consider the cele-

brated Van Leer scheme [1], which turns out

to be an important foundation for the devel-

opment of recent schemes such as the AITSM-

family [2-4]. The mass flux of the Van Leer-

type scheme is,

I_ 1/2 = p.ia.j:_74,._)( M.i )-4-Pj+laj+l,_/[_4,,,_}( M i+_ ).

(a)
, 4-

where ,,k4(4,,3) are the split Mach number func-
tions defined bv the 4th-degree (or second de-

gree in [1]) i)olynomials in the subsonic range:

± if IMI > 1.

.k4(l ),

._:_,.;_1(31) = ._4{,I(M)[1 q: 16,:¢.Pl_:_I(M) ],

otherwise,

(4)

wllere

and

1
(5)

1

Other forms are l)ossible, but are not es-

sential in the discussion in this paper. The

scheme. Eq. (3), is known to produce a dis-

sipalive result a.l a Colll act discontinuity. As

M = 31._ = M i+_ = 0. lhe nlass flux (loes 11(71,

vanish,

1_I1/2_--- (p,i(// -- Pa+l(,tj+l)/-l. ('7)

It is clear in the Van Leer scheme that two

variabh_s, namely (p, a). need to be dealt with

ira mass flux is to vanish a! M = O. It is due

to this observation that a (OllllllOn speed of

sound (tl/2 is introduced in the AIrSM + and

AIJSMDV schenles. Let's modify Eq. (3) by

using al/2.

= :ll i+, )).
(S)

where the exact definition of a_/2 is not iln-

17ortant for the moment, but is cert.ainlv the

central toph of this paper. The limi( ing form

of ml/2 at. M = 0 becomes.

§The coefficient in (19b) of J('P 129,364-382 (1996), should be 1/4, not 1/2.
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Clearly the connnonspeedof soundaj/_ alone

is not enoug]l to make the Inass flux vanish

at M = 0, and we need something extra.

A novel approach is prol)osed in the :\US-

MDV scheme in which the split Mach immber

functions .t,'/_) are added as an a.nti-dilfusive
mechanism to fully cancel the excessive dis-

sipation. The interested reader is referred to

[4] for details.

In a different approach. AUSM + defines

the mass flux as

a,/2 [311/2(p.,+p.;+, )-IM1/2t(fb+,-p.i )].J_l/_= --7-

(10)
where

31,/.2 = .M_7_,,e)(Mi) + .M_.,_)(Mi+I ). (11)

Sitlce 31t/2 = 0 when 31,i = Mj+I = 0, we
o

automatically gel ml/2= 0.

• 2 [ Van -eer

1 0 [l.,m,.,e.,, 0.8 _ • • HL L

8 2 o.a

.2_ 6 D 0.0 HNn.nnnU_D,,_N

z - -8.a i

[2 • -0.8

0 I,gmlMMnnnm,

C' 4 8 O 4 8

X X

-J ( 2.0

F;- 1.6

I V 1.2

_,_uuNu°,NHJ,lenn,

,9 H i 0.8

,9 1_ 8.4

:,, 0 8.0

Im=.jm_g_=....

Wnnunnw •

5' ,1 :f 4 8

X X

dissil)alive schemes. Van Leer and liLLE [5],

will destroy the discontinuity at l,he first time

step: Van Leer flux is seen to be more dissi-

t)ative 1hart the HL.LE flux.

While a stationary contact can be exacl Ix
_r 'captured by the original AISM scheme [2],

t'aihu'e is encountered in the case of mov-

ing contacl discontinuity, as shown in Fig.

2. This is also the reason for inlroduc-

ing a colnnlon sl¢eed of sound in the AlTSM

schelne to achieve this and other improve-

ments, thus leading t,o the ilnproved scheme

called AIIS,M + [3]. Since the common speed
of sound is inlroduced as a, means 1o yield an

accurate sohllion, which is only meaningful

in the numerical franleworl<, hence it is here-

after lermed "'numerical" sl)eed of sound.

2.0 ., . ALSM +

_- ALSM
1.6

.2
EL

0.8

0.4 -

0.0 I
-0.6 0.0 0.6

×

Fig. 2 Slowly moving conlact; comparison of
AI'SM and AVSM + solutions.

Fig. 1 Stationary contact discontinuity by the

Van Leer and liLLE schelnes

We remark that both AITSMDV and

AISM + yield lhe _lesired l'esltll for a slal,ion-

arv contact discontinuity of any strength in

(P.f-O;+l) with an arbilrar!;at/2. Figure 1 dis-

plays the solution al I > 0 for a stationary

conlact discontinuity. It is seen that the two

As sl,aled earlier, the contact (slalion-

arv and mox'ing) disconlitmities can l)e ac-

curately resolved with an arbitrary numerical

speed of sound o l/2. This leaves us one degree

of freedom to deternline o 1/2 SO that another

interesting properly can 1)e met. for example.

exact capturing of a stationary shock discon-

linuitv. This is accomplished in the AlTSM -

t'amilv schemes by setting (detailed deriva-

3
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rio. ,a. he ro..d ]. [a]),

a,/2 = ,,,in(i,L,gtR),it= .''In,a,×(.'.I,I).

where a* is |he critical spee(l of sound. For

ideal gas, we have

.2 2(_- 1)H
. - (13)

_+1

35

30 ,:<,?.',%',XX>

25
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15

I0

5

0
4

35

30 ¢<C<,_>2<<

25

2O

15

I0

5

0

Roe

,-U-c :_

8

X

AUSMDV

AUSM _

,__.CC.2.:.._ZC-..,

8

X

30 <<<<';<'5;

25

-LLE

20 . Van _eer/HOne_

15

TO

5

0 L ..'J- _."; ?" '_£C<."

0 a 8

×

Fig. 3 Slationary shock disconlinuity: a numer-

ical speed of sound is inserted in each of tile

s('helnes included.

1! is well known that a single shock can

be captured I)v the Roe scheme with the so-

called Roe averaged quantities. One of these

(lUalH, ilies is the averaged speed of sound,

which also is "'numerical" in nalure. The

idea of regarding tile quantity all _ as a free

variable turns out to I)e rather powerful in

the sense that the idea can be applied to

other schemes equally well. Firstly, the two

interlnediate shock points 1)v the Van Leer

schenle, including ils original form [1] an(l

H_nel's modification [6] for the energy flux,

are now dramaticalh' reinoved by siinply in-

corporating this special numerical speed of

soun(l. Secondly, the HLLE schemes can t)e

made to satisfy the same t)rol)erty 1)y using

the formula in Eq. (12) as well. Thirdly, in

addition to the familiar Roe averaged speed

of sound, we find that

al/2 = max(oL,a/q,). (14)

instead of "'rain'" used in Eq. (12), can also

yield all exact shock profile. The resu]l in

Fig. 3 for the Roe scheme was obtained with

this forlnula. To our knowledge, these choices

of all2 to achieve the exact l)roperty with the
lILLE and Roe schemes are I)reviously un-

known in the literature.

Formulation for All Speeds

It is wideh" known that the standard form

of corn l)ressil)le eq uat ions, discre! ized with ei-

ther centered or Ul)wind schemes, yields two

major effects on the solution as tile flow speed

al)l)roaches zero: (1) a drastic slowdown or

level-off of convergence rate, (2) an inaccu-

rate or even incorrect solution. An effective

way of dealing with the first point is by in-

set'ling a t)remultil)lying matrix 1o l h(' time-
derivative term, thus it is usualh" calle(t the

local preconditioning technique. Many au-

thors, nolal)h" the schools of Merkle [7], Van

i.ee," [8]. and Turke] [9]. have made sigl,ifi-
canl contril)ulions in this area. For the sec-

ond point, the ina('cura('ies in tile upwind

schemes are i)rimarily due Io lhe incorrect

scaling of the dissipation tel'Ill as :ll --+ O. In

fact, tile dissipation turns out t.o be scaled

by the sound speed at low Mach numbers.

thus yielding excessive numerical dissil)ation.

This immediately suggests lhat numerical

fluxes need to be modified to correcl this sit-

uation.

The preconditioning is done to essentially

alter tile eigenvalues of the hyperbolic sys-

t.ems so that the wave speeds becolne nlore

or less equalized. To see this. we define a

4
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condition number t, as tile larges( ratio of
eigenvahles,

forlll:

I"1+ a
h'- , _c., as It, l--+0, and oheld fixed. F=

I.I
(1.5)

Clearly there is a large dist)arity of wave

speeds and as a result this has been identi- where

fled as the source of slow (or no) convergence

as Iu] --+ 0. We bring the attention that the

limiting taken in Eq. (15) is fundanlentallv

different flom that by holding u fixed and

taking o --+ ._. The forlller is nlore general,

allowing low speed in a conlpressil)le medium

(where a is finite), and it is especially use-

ful tot' dealing with situations with disparate

speeds of sound in t.lle flow.

Now if the numerical system is modified in

such a way thai i! has a corresponding speed

of sound, a. which behaves like [t*l as it ap-

proaches to zero. then lhe condition nulnl)er

will remain order of unit\. That is.

I"1 + a
_ - I,I --+o(_). whilea --+0. as I"l + 0.

tlelwe, condition nunlber remaitls of order

tinily at low speeds. The numerical dissipa-

tion based on this new speed of sound now

scales with the local speed I"[, instead of lo-

cal sl)eed of sound a. To achieve this goal. the

trick is t.o manil)ulate the hyperl)olic system

with the premultiplying matrix. Therefore.

the system is re-scaled. The numerical speed

of SOUll(l COllies in handy for achieving the

purpose. I:sing the time-derivative t)remulli -

plying matrix proposed by Weiss and Smith

[10], the lithe dependenl governing (Euler or

Navier-Stokes) equations are cas! in the fol-

lowing form:

011" OF 0(;

F 0--7- + _ ÷ /).q - 0, (17)

where I1" is a veclor of primitive variables,

(p, u. v. T) T and all other variables are stan-

dard. The preconditioning malrix takes the

1 p
(-) + _-T 0 0 T

±) r,_,"((-) + R_" O () r
/It ',,(o + _) o , T

H
fl(® + -_r) - I pu p,, p((',> - y)

(is

1 1
o = _(7,, - 1). (l:))

Me = min(l,lnax(_]l 2, :_I_,)). (20)

The cutoff parameter M,., is introduced

to prevent a singulal'ily al stagnation point.

It is a user-specitied parameter. 17nfortu-

nately it does have sortie effects on the solu-

tion in some situations, as will l)e displayed

later (in Fig. 4). The effect of 3I,,> gener-

ally is minor, bul couht t)e of significance in

SOnle situations. :\ t)ressure difference ternl.

a.s suggested l)v Weiss [11]. can be added 1o

enhance robustness near a stagnation l)oint.

The reference quantity .1I_ is also 1)ounde(1

Dora al)ove to unity as loca] 31 exceeds one.

As a resuh, the eigenvalues of the flux .laco-

bian of F with respecl (.o IlL i.e., l'-l?).b'/011"
are u. and

'2 1 + M/

(21)

where M = u/a is (he unsealed .\lath nunl-

bet'. Several remarks can be made concerning

lhe eigenvalues of the l)recondilione(l system.

Firstly, we have a bound for (he coetficient.

- < < 1. (22)
"2 "2 -

Secondly, the speed of sound is llOW re-scaled

by the scaling factor .f( M; 31.). Thus. a new

sl)eed of sound can be defined.

a =.f(M'.AL)o, (23)

f(M :AL ) = _/v(l
+ 13/. e

_+ M_
(124)

,5
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li is reminded that a in tile above equation

he given in Eq. (12). Tile scaling factor is
also bounded.

- - l, 23Ic. if 1 >> _11_, >> M 2.

(25)
Tha! is, the scaling factor J' is 1)ounded fi'om

beh)w by tile larger of the local aud cut-off

Mach numbers. Clearly, the variable _, intro-

duced as above, has been utilized for nothing

t)ut numerical 1)urposes. Hence it fits in the

spirit of numerical speed of sound.

Now equit)ped with the newly defined nu-

merical speed of sound, we can readih' incor-

porate it into the formulation of the AI"SM-

family schemes. In this paper, we will il-

lust rate the concepl within the framework of

AI'SM + only: similar procedures can be also

inlplenlellled ill the other schemes. Let us

use the above scaling faclor t,o define the nu-

merical speed of sound, _51/2 = fi(Ui-Ui+l),

al lhe interface 1/2. Tile mass flux of the

AI'SM + scheme in Eq. (10) now can be

recasl by inserting this numerical speed of

SOllll(t.

H1/2 r .-

t_ll/2 z 7)['l*l/2(Pj-_-/Jj+l )+[M_/21(P,;--P./+I )]

(26)
where the interface Math number is given by,

311/2 = td + ,• t4.,31(31i) +,t4_,_t(3-/i+1 ). (27)

t4 ±and the arguments ill . _-t.¢1 have I)een sub-
stituted with

•U, = + +(l -

1
M,+, = a[(l + .112 )_0;+, +(1 -M_ )_0;]. (2._)

Tile tilde Mach numbers, (3"//. 3"/.i+1),. are

now defined with rest)eel to the numerical

speed of sound a, i.e.,

(/ "= =. (:30)
(I

This is the scaled Mach number, which will

revert to the local physical Mach number at

supersonic speeds. The step taken in Eqs.

(28)-(29) is necessary to eliminate unphysi-

cal uumerical diffusion presenl in the pressure

flux splitting and to enhance the robustness.

Test. cases have shown that the definitions in

Eqs. (28)-(29) are not strictly necessary for

the mass flux definition; the simpler alterna-

tives flj = flj and flj+l = ]llj+l call be

used as well. These result in a slightly more

dissipative schenle tbr low Mach number cal-

culations.

For identification purpose, we now call

this extended method, AI;SM + a, to high-

light the role of the numerical speed of sound

In Fig. 4. we demonstrate that the nu-

merical dissit)ation is greatly reduced even if

the scaled numerical sound speed is included

in the \:an Leer scheme for solving the con-

tact problem. The error will begin io reach

the end of the computation domain in 1.5

steps with the original scheme, but slill re-

mains inside a,fior 180 steps (not shown in

the figure) with the scaled numerical sound

speed. Hence, confirming a much smaller dis-

sipation as evident in Fig. 4.

12 _

c. 8i

Bi

4'

2'

Or;glna lb steps

• _um*- c. I_ s'eps

,/an Laers _iu*

)

30 ,t..7, 5.0 6,0 7,0

×

'6
Name, o 1%o=Ol

• * Namer. o, 1%o=0¸01
-4_

"2' Va_ Leers F_ux

63 s'_as

<- 6

6

4

2_

O.0 _.0 50 60 70

Fig. -I Stationary contact discontinuilv, showing

the effectiveness of using the scaled numerical

speed of sound in tile \'all Leer Flux.

Another interesting result is also revealed

in Fig. 4. The plot on the righi demonstrates
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the dissipativeeffectof the cutoff *Iach num-
1)er -U_.,_on the spreadingof the stationary
contact. Tile smaller the :'lifo is sel. tile
sharl)er the cont.a.cldiscontinuity gets re-
suits being closer to the exact,solution de-
noted 1)3' solid lille, indicating that the nu-
merical dissipation increaseswith the va.lue
of M,:o.

To further iml)rove tile convergence in the

low speed range, it. is foulld beneficial ill Ed-

wards and Liou [12] that a pressure diffusion

term m_, be included in the mass flux.

I;tl/2= Eq. (2(-J)--_- 1;ip . (al)

\Ve can wrile fil t, ill the following general

forlll.

1 - M_)-M_(I,; - p.,+,). (32)

where

_x.t4= [.t4_._,ts1,1-.t4_,,(.u;i

and lhe function 'D in the denominator can

take several forms. Based on the mass flux

of the AITSMDV scheme, Edwards and Liou

[12] derived the pressure diffusion term for

low Ma,ch inunbers,

[l,., _,,+l] (a4/z,= ,_I?,7+ _
Ill this paper we suggest, another formula.

__ l [-1/2(](i -_- /'j+l )(/gj nt- fl.,+l)

P.JPj+_

-(t'0 - p.,+l )(pj - a.i+l )]. (:3.5)

This is obtained by also starting with lhe

AITSMDV mass flux and by imposing a. cot>

dition that its weighting factors be bounded

(see Appendix A). Furl.hernlore. the last term

can l)e omitted to guarantee that "D be posi-
tive.

"D- 1 [2112(p,;-}-](,+l)(pjq-pj+l)], (36)
P._P.i+ l

which looks similar to tile firsl expression.

To see how the numerical sl)eed of sound

derived for the preconditioned system affecls
the discretizalion, it is useful to examine the

mass flux in the limit of an incompressible

flow. where p is constant and al/2 (but not

ha/2) aI)proaches infinity. 17sing tile defini-

tions in Eqs. (26)-(32) and taking tile limit

_11_ tending t,o zero in Eqs. (28)-(29), we find
that

,r,,,= ,,,,, + v/"_/_+ 4_:,
1[2 (p, - pi+l)

×*,[_(l:_hl-1)_+ 3(_I_- _V].(at)

where

and

1

HI� 2 = 7)_(Hi -[- Hi+ 1), (38)

,111 = "1/2 (3!t)

v/,,_.+41;_

The reference velocity 17, is defined analo-

gously with Eq. (20)"

1"2= lnax([¢l _ I '_)
t't) ' (40)

This mass flux formula involves onh"

tile velocity field, pressure, and a constant

density and is similar to that utilized in

incompressible-flow discretizations on non-

staggered grids. Note that the physical sound

speed COml)lelely disal)t)ears from the formu-

lation in the incompressil)le limit. Advec-

live upwind influences at'(' i)resenl in t.he mo-

mentunl e(luations and the (decouple(1) en-

ergy equation through lhe switching I)rOCeSS

shown ill Eq. (2). but only tlle pressure-

diffusion lerlll I)rovi(les dissil)alioll for tile

continuity equation.

:Moreover, the idea of using il can be read-

ily applied to solve multiphase flow problen>

7
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in which both tile density and Mach nun>
herscall varYdrastically with phasechanges.
More interestingly, the flow call gosuperson-
ically eventhough tile fluid speedis low, due
to a steet) decreaseill speedof sound. The
readeris referred to [1:3]in this conference.

In what follows we summarizethe steps
involved for adding'the immerical speed of

SOllnd ill |[|e AIrSM + . These steps, although

motivated for low-Mach number flows, are

also valid for high Mach-number ones. The

modilical ions detailed above also work for the

pressure flux splitting (at least for perfect

gases), serving to remove unphysical sources

of lmmerical dissipalion in the nlOlllenlulll

equations.[l 2] l:urlher modifications are nec-

essary for real fluid a pl)lications, and the

reader is again referred to [13] i\)r details.

f(M;aL) in Eq. (24). Other 1)recondilioi>

ers [8,9] can be used as well. The procedure

for extension will be precisely the same since

all one needs is the eigenvalues of the pre-

conditioned hyperlmlic systenl. Thus. a new

numerical speed of sound b can be expressed

in terms of the scaling function f(M: M.).

ttowever, no significant effect on the solution

is anticipated because all these precondition-

ers yield more or less tile same behavior in the

limits of M _ 0 and t. Unless at low speed

(say M_ < 0.3), it was found in our calcula-

tions not necessary to include the precondi-

tioning matrix in solving the governing equa-

tions. In olher words, the scaling fullction

can be incorporated alone, as in Eqs. (26)-

(29), in the numerical flux and improvelnents

in at'curacy and convergence can I)e realized.

, lrse lhe numerical speed of sound (11/2

(2:1) Io detilw f/i and 3"/.i+_ appearing

in Eqs. (28)-(29).

'2.

3.

.

Replace tile left- and righl-slate Mach

nulnl)er definilions by 31i and Mj+I.

('onsl rucl the lllass [htx as usual 1)v us-

ing as inlml the (Mi..Q.i+I)defined in

the previous step.

Ifdesired, add contribulion from pres-

sure diffusion t)v using Eq. (:32).

5. ('omt)lete evaluatioll of other fluxes.

This is all there is to il, involving a kind of

pre- and post-processing of tile usual AUSM-

family schemes, steps 1-2 and 4 respectively.

It is a matter of adding only a few more lines

to the original AI'SM + code. It is believed
that other low-diffusion hybrid schemes can

also be extended in a similar manner. We

shall denote the scheme with tile 1)ressure dif-

fusion lerm AI:SM + -al).

\\'e now make remarks on the precondi-

lioning matrix F. We have used the Weiss-

Smith F to arrive at the scaling function

3. Results and Discussion

In this section, we will present 2D and 3D

Navier-Stokes solutions for turlmlenl flows

over various geometries. Tile scheme pro-

posed in this pa.per was inq)lelnented in tile

OVEIII_'LOW code supplied l)v ]Suning el

a l. [14]. The turl)uleuce eddy viscosilv in

all cases presented herein was calculated ac-

cording to the Spalart-Allnlaras one equation

model [15]. All of tile resuhs presented t)e-

low were ol)lained using an implicit scheme.

The LHS operator was a pl)roxinlaled with

tile standard central difference scheme plus

appropriate artificial daml)ing terms. (even

though the RHS residual ol)eralor was l'ep-

resented with an upwind scheme !), il was

then furlher factored and diagonalized in

each space dimension.

Tile flux in the RHS operator was con-
structed with a third-order accurate inter-

l)olation t'o1" t he pri mill ve variables. 1ogether

with limiter used 1)v Koren [19]. The CUt-

oft" Math nunl])er ill Eq. (20) is given 1)v

31+o2 = 31_/-1. However, lhe ()VI_;tiFI_OW
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code has a parametercontrolling the useof
the preconditioning matrix F. \Ve kept.the
default vahte to be 3M2, _< 1 under which
condition F wasactivated.

In this paper we will demonstrate the
effectivenessof using the numerical speed
of sound in calculating flows a.t all speeds,
specifically focusingon two issues: (1) con-
vergencerate and (2) accuracy. \Ve will
show that the convergencerat.eis improved
for the entire flow speedregimeand the cal-
culated solutions are in excellentagreelnen!
with data.

Shuttle External Tank

This is an axisvmmelric Shuttle external

tank geometry with a sharp nose and blunt

base. dowust.ream of which a significant sepa-

ration zone is created, see Fig. 8. One of the

grid lines conforms to the body and grows

outward and a plane consists of 88 × 60 grid

points. Shown also are the meshes clustered

around some key regions, one of which is in

the middle to resolve a tiny notch (not visi-

ble t,o the scale). The free stream Reynolds

number was tixed a.t 10,000. But a fully tur-

bulent flow from the nose was assumed in

order to pose a more stringent condition fbr

the assessment o1" convergence behavior. We

have tested conditions from low Mach, tram

sonic, to supersonic flows. Several schemes

were considered, consisting of the slandard

AISM +,AI'SM + a, andAl'SM +-ap.with

and without the \Veiss-Smith preconditioner.

In all calculations for this problem, we made

200 slel)s for each of two coarser grids l)rior

t.o lhe finest grid, on which 3000 more steps
were continued unless noted otherwise.

Table 1: Summary of convergence behavior due to various schemes for the shuttle external

tank. th._. = 10000.

0.80

2.00

Scheme No Precond. Precond.

AUSM +

AI:SM + -a

-a + d_,AIrSM +

,/
No COllverg.

No converg.

Diverg.

,/
,/

A[TSM + v / v/

AITSM + -a. x/ v/

AITSM+ -a + v/ v/

A TSM + ,/ ,/
AI!S,_I + -a v/ v/

AIISNI + -a -I-fi*,, V/ V/

Table t summarizes the convergelwe be-
havior of the above combil_ations. \\'e ob-

serve the following: (1) For low Mach ram>

1)ers (approximately M-< < 0.3). it. was found

necessary 1o use the time-derivative precon-

ditioner F so thai the numerical dissipations

in both the implicit and explicit ol)eralors

are compalibly scaled. Otherwise, the cal-

culation either diverged or stagnaled. (2)

For flows at transonic speeds or higher, the

tinle-derivative preconditioner, as given in

Eq. (1S). serves no benefits whatsoever, even

9
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though _he fluid speed is low in the vis-

cous and tile I)ase flow regions. This is un-

derstandable because tile preconditioner ef-
fects only the inviscid waves and tile inforina-

lion in t,he viscous-donlinaled regions is only

transmitt, ed via diffusion processes which are

ably handled by the ilnplicit operator. Vis-

cous and grid aspect effects call be included

in the conslruction of preconditioner, see for

examp]e [16].

,0 0

.0-1

0-2

0-5

0-a

0-5

8 6

*0-7 t

I

"081
0

"N';

\
2000 4008 6000

N

AUSM +

[q =0.01

, : I¢ =0.1

• • , _,=0.8

X :': Z _,='.25

• • • V,:2.C

Fig. 3 ('onvergence histor.v for l he shultle exter-

nal lank probh, m.

In l"ig. 5, we display lhe convergence

hislorx R)r various ,Mach numbers using

AIS,M + , without using the preconditioner

F. The residuals for the low )da, ch-lmnlber

cases stall after a drop of four orders of mag-

nil mh'. These drops in many calculations, al-

though not especially adlniral)le, would have

been accel)tab[e. However. a close examina-

lion of the solution reveals thai it is oom-

ph'rely unacceplal)h', as shown in Fig. 6. It

appears thai there is a false boundary (ex-

actly aligned with a grid line) at which infor-

mation is unable to pass. This l)henomenon

is quite typical in tile low Mach-lmmber cal-

culations using an unmodified compressible

code, also seen in [12]. Hence, a measure

of caution should t)e taken when reading the

residual history for tile low Mach-numl_er

solutions.

L

it
VI

/

¢

/

Y

Fig. 6 Pressure contours for the shuttle external

lank problem obtained at N=6400 time steps for

31× = 0.01, using the standard AUSM + . The

Boltom picture shows a magnified view near lhe

IlOSe.

!00

,0-2

i0-5

.0-5

,0-_,

-0-7

-0 8

C 2000 a000 6000

N

AUStd + o

V.-0.01

V :0.1

• • • V . -0.8

7 Z Z V.-" .25

• • • _¢,:2.0

Fig. 7 ('onvergence history for lhe shuttle ex-

ternal lank l_roblem obtained by the A[TSM + -a

schenle.

On the other hand, the convergence his-

10
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tories with the useof the numerical speedof
sound display improvementover thosewi(h-
out it, as shown in Fig. 7. As no(ed ear-
lier in Table I, it is necessaryto invoke F for
the 31,_,= 0.01and0.1 cases. Tile conver-

gence rales for these two calculations nearly

coincide with each olher, indicating Mach-

numl)er independence.

Slel)S a) which lhe residual has been dropped

Io lhe level ai)proximately equal 1o thal

shown in Fig. 6 (N=6400). It is of inter-

esl noticing that the solution now is well be-

hayed and is every bit as good as the solu-

tion at N=3200. Also the blow-up view near

the surface reveals smooth profiles of pressure

con(ours, unlike the standard AIrSM + which

has been known to yield unwanted pressure

oscillations in viscous layers along tile trans-

verse grid lines when the mesh aspecl ralio

is large and flow is essenliallv parallel 1o a

grid line.* The separation region in the base

of the tank is depicted by particle traces, in-

dicating its size extending about one radius

dowllsl, l'ealll.

rv

100 ................

0-_ !

0 -2

0-5

'%,
0-7

\:.. "...
0 - 8 _ ___ ........... _ ....

2000 .4-000 6000

"t

hUSM+-o + _,"p

_¢ =0.0!

to< :0.1

• • • _ :08

Z X V v,:'.25

• • • V,:2.0

Fig. S Pressure conlours for the shuttle external

tank prol)lem obtained a,l, N=I000 time steps for

31,x = 0.01. rising AUSM + a. Tile middle pic-

ture shows a magnified view near tile nose and

tile bottom one depicls the separated zone be-

hind tile tank base.

In t:ig. _,'q,we show the solution a,t N=IO00

Fig. 9 (1onvergence history for tile shuttle exler-

hal tank problem obtained by the A[TSM + ap

met hod.

Finally 1he effect of including lhe pres-

sure diffusion t,erm on Ill(" solution was in\'es-

t,igated and the results are given in Fig. 9.

Again. the precondil,ioner F must ])e use(] [k)I"

lhe low Mach-number CASESand their conver-

gen('e histories are essenlialh" iden(ical, be-

coming independent of Math number as the

Mach number lowers. The pressure contours

are in(lislinguisllable from those shown in

Fig. S and are thus nol included.

*However, lhe pressure dist,rit)ut, ion along the wall is smooth.
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Fig. 10 Pressure contours at ._1_ =
0.01.().1,0.,%1.25,and2.0(from top to botlom)
for the shuttleexternal tank problem,showing
accordinglydifferentflowfeatures.

Tile solutions obtained I)v using lhe

AUSM + a for several Jlt,-<. va.lues are given

in Fig. 10 for coinparison. They all ap-

pear physically correct and are lmlnerically
well behaved. No discenibte differences were

noticed between those by AITSM + -a and

AUSM + ap.

Comparing Figs. 5, 7 and 9, we see thai

the convergence rate is improved in the tran-

sonic ranges by simply using the numerical

speed of sound alone. For low Mach nuln-

her cases. 3[-< = 0.01,0.1, another order of

reduction can be obtained t)3" including the

pressure diffusion terln. Also, the use of nu-

merical speed of sound yields the convergence
histories that are relatively insensitive 1o the

flow speeds. Thus, the validity of the presenl

method is confirmed and the goal of having

a, convergence rate that is more or less inde-

pendent of the fl'ee-stream speed is achieved.

\\,'e now summarize major findings t'ronl

lhe study of this problem: (1) The numer-

ical speed of souIl<t concepl is all effective

means of extending AlTSM-tyt)e discretiza-

tions to solve low Mach nmnl)er flows in an

accurale and etlicient lllallller. (2) Since the

nulnerical speed of sound is reduced with the

flow speed, the numerical dissipation changes

accordingly, and a compatible implicit op-

erator (one thai includes the precondilion-

ing matrix) must be used. (3) For moderale

Mach numbers and beyond, it, is not neces-

sary to use F. (4) Incorporation of lhe nu-

merical speed of sound, as described in steps

(26)-(29), helps remove pressure oscilla, t,iolls

in the viscous layers.

ONERA M6 Wing

The next probleln ix the ONERA M6 wing

with the free strealn conditions M,_, = 0.84.

and He,_ = 18.2 × 10_. under various angles

of attack. The coml)utation domain consists

of 269 × 35 x 67 grid 1)oinls. For this case.

the l)recondilioning matrix 1' was automati-

cally turned off in the (:ode since the control-

ling factor :1-_I._. exceeds unity. However, the

1"2
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numerical speedof sound & was active with

31,.._, = M_/2. The pressure contours on tlle

wing surfaces are displayed in Fi R. 11, show-

ing the well-known A-shock pattern, l.hus ap-

pearance of two shocks roughly in two lhirds

of the wing span. The detailed comparison of

surface pressure distributions are shown for

two spanwise sections. Figs. 12 and 1:3 re-

st)ectively for 44{_ an(l 65%, for four angles

of attack. The ('Oml)uted results are in very

good agreement with the data [17], especially

in capturing of the shock locations.

The convergence histories are presented

in Fig. 1-1 tkn two differenl angles of attack.

They show a continuing decrease I)3 al)oul

five orders of magnitude fi'om the largesl val-
ues. at. nearly the same rates.

Wingbody

Turbulent flows over a wingbody config-

uration are calculated and their results are

now discussed. The geometry is shown in

Fi R. 15. where the sting is included in the

calculation. The computation domain is grid-

ded using the chilnera overset grid techlfique

and entire grid is COml)osed of seven grids.

The flow conditions are: -I1_ = 0.8, o = 2",

and He.,< = 0.167 x lff;. Figure 16 depicts

the pressure coeflicietlts at various spal,wise

Iota!ions. The compuled results are in excel-

lent agreement wilh the measured data [1S].

Moreover, the l)ressure coefficienls along the

body, shown ill Fig. 17. exhibits a similar

level of excellent agreelnen( with the data.

even in the wing root region where a sharp
variation is encountered.

Finally, Fig. 18 displays a well-behaved

convergence history, reducing the residual er-

ror by more than live (.5) orders of magnilude

in 800 steps.

turns oul to be a very useful varial)le that can

be employed to construct an upwind scheme

to satisfy certain properties, most notably

the exact capturing of contac! and shock dis-

continuities tot" 1D t)roblems. This numer-

ical speed of sound is explicitly utilized ill

the construction of AUSM + and AUSMDV

schemes, ttowever, the idea can be inserted

in the other Ul)wind schemes. One example

is in the Roe flux splitting where an aver-

aged speed of sound, among several other av-

erage(] variables, is automatically required tot

the process. We have showll thai other cele-

bral,ed schemes, which in standard torm ex-

hil)il intermediale points, can now be made

to capture a shock exactly.

More inlportan113', the concept of numer-

ical speed of sound, being meaningful only in
the numerical sense, can be extended to effec-

lively deal with flows a.t low speeds. The crux

is thai a. sca.ling factor varying wilh speed (or

Math number)is introduced. As a result, the

nunwrical dissipation is decreased with the

flow speed, llence the convergence rate is en-

hatwed, nol only at low speeds, but also at

high speeds as well. .Xdditionallv. the solu-

tion accuracy is ilnproved.

The effectiveness of implement ing the nu-

merical sl)eed of sound in the AI:SM + scheme

has been demonstrated. Solutions of con>

plex turbulent flows were oblained for con>

plicated geometries, meshed with the over-

sel grid technique, using the O\'ERFI_O\\

code. We have presented convergence his-

tories demonstrating significant improvement

over lhe t)revious scheme. The pressure dis-

trilmtions are in excellent agreeinenI with

available data for the ONERA M6 wing and a

wingbody configuration, further proving the

reliability of l he new scheme, ,\l_S._l + a.

4. Concluding Remarks

In this paper we have introduced l.he no-

lion of "'numerical speed of sound", which
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Appendix A

In this section we give a formal derivation

of the function T_ thai appears in the pressure

diffusion tel'Ill ill ulass []ux. \_Te begin with
tile AUSMDV flux writtell in lerms of the

lmmerical speed of sound,

+ )

+,S ) -

-[-P,J-l-l_"-('_v/l?4,i3)(d_lJ+ 1 ) -- "_/_?l)(A/./+l ))]" (1)

vlhere

fl'i "" + 115 - P._+I (:2)
= _, p.i+l.-' - D

1=¸:[
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Thesecanbe rewrit loll as

1

aJ = -xt,), a)
1

- .O(Zp + .xp), 4)

together with

Y_P = lb + P.,+a, ..Xp = P.i+l - lb. (5)

Noticing that D has the dimension of p/p.

Substituting these formulas into Eq. (1), we

denote tile coemcient for Ap term l)3"

bl/"

h',, - 2D..X,_. (6)

where we have _k,._ given ill gq. (33). As

3/.i, :11j+1 --+ 0. we get

1

',._4 = (2 + :#) (7)

Hence, if D = 0(1). then

li_, = O(U1/2), aS "1/2 << 1. (8)

Thal is. tile lm'ssure diffusion term dimin-

ishes with lhe flow speed and it clearly is ill-

sufficient to provide adequate contribution of

pressure to the mass flux at ]ow speeds. This

can be remedied by properly rescaling /(l, as

_ al/2 \ ,

As a rosul|, we shouht have defined w + in tile

following way,

1 _Xp

+ - (10)

_ 1 __p;
P.i+l_' - 2D(_7. P-I -_). (11)

What is left is to determine the expression of
D. Firsl. we rel{lal"k thai the condition for

capturing a stationary contact disconlilmitv

requires

P.i_'+ = P.j+l_,'- (12)

Monolonicitv constraints on the "+'" and "-'"

splil Mach nunlbers in Eq. ( 1 ) implies condi-

t.ions on #+ (see [4] for example),

,)

0<_.,+,_.,- < - . (13)
- - 1+1,4

A more stringent condition fulfilling the

above inequalilies may be

.)

(J <_'+ +w- =,_' < " . (14)
- - 1 + 1:4

This gives the relation

1
"P = Me D -

wP.iP.i+l
.)-- 312(p.; + P.i+l )(P,i + P.i+l )

-(/b - l,;+l )(P.i - p.i+l )] .(15)

This completes the derivation of 'P.
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Fig. l l Pressure COlliours oli the ONERA M6 whig at ct = 3 °, J/,x = 0.g4. and R_,x = 1g.2 × 10 6,

showhig the A-shock pattern near lhe whig tip.
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Fig. 15Geometryof lhe wingl)odyprobleni.
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